Multi-sensor Data Fusion For Lane Boundaries Detection Applied To Autonomous Vehicle

Federico Camarda

PhD candidate - 14th January 2022

Supervised by Veronique Cherfaoui, Heudiasyc Franck Davoine, Heydiasyc Bruno Durand, Renault Group

Jdiasyc

Rendult Group

Recherche

Summary

01 Thesis introduction

O2 Problem formulation

Multi-sensor fusion for lane boundaries estimation

Map-aided multi-sensor fusion for lane boundaries estimation

05 Conclusions

01 Thesis introduction

Informative ADAS

- Lane Departure Warning (LDW)
- Blind Spot Warning (BSW)
- Parking Sensor
- Driver Monitoring System (DMS)

Actuating ADAS

- Adaptive Cruise
 Control (ACC)
- Lane Keeping
 Assistance (LKA)
- Lane Centering Assistance (LCA)
- Automatic Emergency Braking (AEB)
- Traffic Jam Pilot (TJP)
- Automatic Parking

Automated driving

- Level 0 No Automation
- Level 1 Driver Assistance
- Level 2 Partially Automated Driving
- Level 3 Conditionally Automated Driving
- Level 4 Highly Automated Driving
- Level 5 Fully Automated Driving

7 Confidential C

INTELLIGENT VEHICLES TECHNOLOGY

- 1. Sensing On board sensors
- 2. Computing Embedded computing
- 3. Actuating Electronic control systems

THESIS SCOPE : MULTI-SENSOR FUSION

Perception diversity compensates sensor weaknesses

THESIS SCOPE : INDUSTRIAL CONTEXT (1)

Car manufacturers integrate sensing solutions from Tier-1 suppliers : smart sensors

THESIS SCOPE: INDUSTRIAL CONTEXT (2)

- This work is developed within:
 - Sivalab (Hediasyc X Renault joint laboratory)
 - Renault's Fusion Team (DEA-LEA1: Algorithmes Fusion et Véhicule Autonome)
- ADAS software development platform available
- Ad-hoc equipped Renault Espace for Conditionally Automated Driving L3 (Level 3)

THESIS SCOPE : REPRESENTATION OF ROAD ENVIRONMENT

Oriented lane corridors enable safe and predictable navigation for road users

 Because of geographical constraints, roads are designed connecting straight and circular segments with *clothoid segments*

THESIS SCOPE : CLOTHOIDS

- A *Clothoid* is a curve whose curvature changes linearly with its curve length
- Its Cartesian coordinates are given by the Fresnel integrals :

$$x(s) = x_0 + \int_0^s \cos\left(\frac{1}{2}\kappa_1\tau^2 + \kappa_0\tau + \psi_0\right) d\tau, \ s \in [0, l]$$
$$y(s) = y_0 + \int_0^s \sin\left(\frac{1}{2}\kappa_1\tau^2 + \kappa_0\tau + \psi_0\right) d\tau, \ s \in [0, l]$$

• Application of clothoids to road designed allow comfortable transitions road segments:

THESIS SCOPE : CLOTHOIDS

1

0.5

0

-0.5

-1 ∟ _1

-0.5

0

0.5

1

$$x(s) = x_0 + \int_0^s \cos\left(\frac{1}{2}\kappa_1\tau^2 + \kappa_0\tau + \psi_0\right) d\tau, \ s \in [0, l]$$
$$y(s) = y_0 + \int_0^s \sin\left(\frac{1}{2}\kappa_1\tau^2 + \kappa_0\tau + \psi_0\right) d\tau, \ s \in [0, l]$$

- x₀ starting point abscissa
- *y*⁰ starting point ordinate
- ψ_0 starting orientation angle
- κ_0 starting curvature
- κ_1 curvature rate

THESIS SCOPE : CLOTHOIDS

Bartholdi, Laurent & Henriques, André. (2012). Orange Peels and Fresnel Integrals. The Mathematical Intelligencer. 34. 10.1007/s00283-012-9304-1.

02

Problem formulation

AUTOMATED DRIVING PIPELINE : ADOPTED PIPELINE

18

SMART SENSORS : STATE OF THE ART

Smart Sensor #N

- 1. Feature extraction
- 2. Detection and tracking
- 3. Lane (boundary) model

1. Feature extraction

- 2. Detection and tracking
- 3. Lane (boundary) model

[2] X. Pan, J. Shi, P. Luo, X. Wang, and X. Tang, "Spatial as Deep: Spatial CNN for Traffic Scene Understanding"

[3] B. He, R. Ai, Y. Yan, and X. Lang, "Lane marking detection based on Convolution Neural Network from point clouds," in 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), 2016, pp. 2475–2480

- [1] A. S. Hudny and S. Feller, Froudblistic lane esc. for dationomous anyming basis curves, Autonomous Robots, vol. 51, no. z^{-5}
- 1. Feature extraction
- 2. Detection and tracking
- 3. Lane (boundary) model

[4] M. Fatemi, L. Hammarstrand, L. Svensson, and A. F. Garcia-Fernandez, "Road geometry estimation using a precise clothoid road model and observations of moving vehicles," 2014, pp. 238–24

- 1. Feature extraction
- 2. Detection and tracking
- 3. Lane (boundary) model
 - Parametric: straight line, polynomials
 - Non-parametric: pixels
 - Semi-parametric: spline

02 PROBLEM FORMULATION

THESIS USE CASE

Two smart sensors: Smart FrontCam and Smart AVM

SMART SENSOR MODEL

- Smart sensor delivery contains lane boundaries detection
- Single measurements describe the form of the lane boundary
- In the L3 sensor set, both Smart Camera and Smart AVM deliver:

$$M_i = [c_0, c_1, c_2, c_3, x_{min}, x_{max}, \boldsymbol{\Sigma}_P, M_{type}] \in \mathbf{z}_{\mathbf{t}}^{\mathbf{Sens}}$$

• Where P(x) polynomial describes the curve:

$$P(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3, \ x \in [x_{\min}, x_{\max}]$$

• And $\boldsymbol{\Sigma}_P$ is the measurement error:

O2 PROBLEM FORMULATION ROAD MODEL : PRO & CONS

	M_{i-1} M_i M_{i+1} \mathbf{z}_t^{Sens}
	Polynomial
Computation	lmmediate (everywhere) ✔ ✔
Tracking evolution	Hard 🗙
Descriptiveness	Limited 🗙
Curvature-based navigation support	No 🗙
Uncertainty representation	Coefficients 🗙

O2 PROBLEM FORMULATION ROAD MODEL : PRO & CONS

	M_{i-1} M_i M_{i+1} \mathbf{z}_t^{Sens}	F_{j-1}	S_{j-1}
	Polynomial	Road features	Clothoid-spline
Computation	Immediate (everywhere) 🗸 🗸	Immediate (punctually) ✔ —	Open integrals (eff. approx. method exist ✔)
Tracking evolution	Hard 🗙	Easy ✔	Hard 🗙
Descriptiveness	Limited 🗙	Complete (for any curve) ✔	Complete (for road) ✔
Curvature-based navigation support	No 🗙	Discrete representation — (can turn into any curve ✔)	Yes 🗸
Uncertainty representation	Coefficients 🗙	Spatial 🗸	Clothoid params 🗙

02 PROBLEM FORMULATION ROAD MODEL : PRO & CONS

	M_{i-1} M_i M_{i+1} \mathbf{z}_t^{Sens}	F_{j+1} F_{j-1}	S_{j-1}
	Polynomial	Road features	Clothoid-spline
Computation	lmmediate (everywhere) 🗸 🗸	Immediate (puncutally) ✔ —	Open integrals ★ (eff. approx. method exist ✔)
Tracking evolution	Hard 🗙	Easy 🗸	Hard 🗙
Descriptiveness	Limited 🗙	Complete (for any curve) 🗸	Complete (for road) 🗸
Curvature-based navigation support	No 🗙	Discrete representation — (can turn into any curve ✔)	Yes ✔
Uncertainty representation	Coefficients 🗙	Spatial 🗸	Clothoid params 🗙
	IN	DURING estimation	OUT 28

Summary

01 Thesis introduction

O2 Problem formulation

Multi-sensor fusion for lane boundaries estimation

Map-aided multi-sensor fusion for lane boundaries estimation

05 Conclusions

03

Multi-sensor fusion for lane boundaries estimation

- 1. Initialization
- 2. Prediction
- 3. Association
- 4. Update
- 5. Output

- 1. Initialization
- 2. Prediction
- 3. Association
- 4. Update
- 5. Output

- First or non-associated measurements initialize distinct tracks for lane boundaries.
- Each measurement is delivered from the smart sensor in the form:

$$M_{i} = [c_{0}, c_{1}, c_{2}, c_{3}, x_{min}, x_{max}, \Sigma_{P}, M_{type}] \in \mathbf{z}_{t}^{Sens}$$
$$P(x) = c_{0} + c_{1}x + c_{2}x^{2} + c_{3}x^{3}, x \in [x_{min}, x_{max}]$$

- 2. Prediction
- 3. Association
- 4. Update
- 5. Output

- Lane boundary tracks are collections of road features
- At constant interdistance, new features are sampled (according to the **sensor model**) as:

$$F_{j} = \begin{bmatrix} x_{j} \\ y_{j} \\ \theta_{j} \end{bmatrix} = \begin{bmatrix} x_{j} \\ P(x_{j}) \\ \arctan(P'(x_{j})) \end{bmatrix} = \begin{bmatrix} x_{j} \\ c_{0} + c_{1}x_{j} + c_{2}x_{j}^{2} + c_{3}x_{j}^{3} \\ \arctan(c_{1} + 2c_{2}x_{j} + 3c_{3}x_{j}^{2}) \end{bmatrix}$$

- 1. Initialization
- 2. Prediction
- 3. Association
- 4. Update
- 5. Output

• Ego-vehicle motion is estimated and delivered as :

$$\Delta Ego_t = [dx, dy, d\theta, \boldsymbol{\Sigma}_E]$$

• After transformation into current reference frame, Kalman prediction step follows according to the trivial evolution model:

$$\mathbf{x_t} = \mathbf{x_{t-1}} + \mathbf{w_t}$$
$$\mathbf{w_t} \sim \mathcal{N}(0, \boldsymbol{\Sigma}_E)$$

- 1. Initialization
- 2. Prediction
- 3. Association
- 4. Update
- 5. Output

 Existing features are projected onto measurements identifying Feature-to-Feature Mahalanobis distance:

 $d(p_{\perp}(F_j), F_j) = \sqrt{(p_{\perp}(F_j) - F_j)^T (\mathbf{\Sigma}_M(x_{\perp}, y_{\perp}) + \mathbf{\Sigma}_F)^{-1} (p_{\perp}(F_j) - F_j)}$

• Measure-to-track metric for GNN association: $d(M, C_i) = \max_{F_j \in C_i} d(p_{\perp}(F_j), F_j)$

- 1. Initialization
- 2. Prediction
- 3. Association
- 4. Update
- 5. Output

Three cases present depending on observability of road features :

- 1. **Observed features** are updated following Kalman update step
- 2. Unobserved features can be suppressed if distant or obsolete
- 3. Newly discovered features (sampled at constant interdistance) extend existing tracks
I TI-SENSOR FUSION FOR LANE BOUNDARIES ESTIMATION **PROPOSED SOLUTION : FEATURE-TRACKING**

- 2. Prediction
- З. Association
- 4. Update
- 5. Output

y

- $S_j = [x_0, y_0, \psi_0, \kappa_0, \kappa_1, l, \boldsymbol{\Sigma}_S]$
- A road **feature collection can be turned into clothoid-spline** via interpolation
- Using the efficient interpolation method proposed in [6] between successive road features, the **resulting clothoid-spline attains G1-continuity** (heading angle of the curve is continuous all along its length) which makes it ideal for vehicle control

03 MULTI-SENSOR FUSION FOR LANE BOUNDARIES ESTIMATION EXPERIMENTAL RESULTS

- 1. Development setup
- 2. Evaluation setup
- 3. On-board setup

03 MULTI-SENSOR FUSION FOR LANE BOUNDARIES ESTIMATION EXPERIMENTAL RESULTS (1)

03 MULTI-SENSOR FUSION FOR LANE BOUNDARIES ESTIMATION EXPERIMENTAL RESULTS (1)

Execution in *Fusionrunner* environment

03 MULTI-SENSOR FUSION FOR LANE BOUNDARIES ESTIMATION EXPERIMENTAL RESULTS (2)

03 MULTI-SENSOR FUSION FOR LANE BOUNDARIES ESTIMATION EXPERIMENTAL RESULTS (2)

- FrontCam only vs FrontCam+AVM Fusion
 - Lateral error at given range is computed w.r.t. lane-level GT
 - Fusion smoothing effect reflects in lateral error at 0m distribution

	FrontCam only			FrontCam + AVM fusion		
	$\mu[m]$	$\sigma^2 \; [\mathrm{m}^2]$	RMSE [m]	μ	σ^2	RMSE
e_0^L	-0.0638	0.0020	0.0781	-0.0620	0.0019	0.0755
e_1^L	-0.0875	0.0027	0.1018	-0.0773	0.0022	0.0906
e_0^R	-0.1277	0.0039	0.1421	-0.1018	0.0024	0.1131
$e_1^{\check{R}}$	-0.1393	0.0044	0.1543	-0.1254	0.0037	0.1394

TABLE I: Lateral error benchmark

03 MULTI-SENSOR FUSION FOR LANE BOUNDARIES ESTIMATION EXPERIMENTAL RESULTS (3)

03 MULTI-SENSOR FUSION FOR LANE BOUNDARIES ESTIMATIC EXPERIMENTAL RESULTS (3)

- 1. ACC is activated, **Keep** lane
- Lane boundaries are detected by FrontCam + AVM and fused
- Left turn signal is activated, Change lane (to left)
- 4. Back to Keep lane
- Right turn signal is activated, Change lane (to right)

Change Lane based FrontCam + AVM : successful on-board execution

Multi-sensor architecture for tracking of lane boundaries has been introduced and validated

Can support potentially any multi-modal smart sensor set, providing **redundancy** and **perception diversity**

Real-time implementation and on-board experiments confirm **exploitability in quasi-industrial use cases**

Work accepted as contributed paper at : 2020 IEEE Intelligent Vehicles Symposium (IV 2020)

Summary

01 Thesis introduction

O2 Problem formulation

Multi-sensor fusion for lane boundaries estimation

Map-aided multi-sensor fusion for lane boundaries estimation

05 Conclusions

04

Map-aided multi-sensor fusion for lane boundaries estimation

04 MAP-AIDED MULTI-SENSOR FUSION FOR LANE BOUNDARIES ESTIMATION MAP-PROVIDERS : STATE OF THE ART

Mapping and Localization

04 MAP-AIDED MULTI-SENSOR FUSION FOR LANE BOUNDARIES ESTIMATION MAP-PROVIDERS : STATE OF THE ART

Mapping and Localization

49 Confidential C

04 MAP-AIDED MULTI-SENSOR FUSION FOR LANE BOUNDARIES ESTIMATION MAP-PROVIDER MODEL : GLOBAL AND LOCAL FRAME

EntityA is ego-vehicle – EntityB is a map-node

TION **MAP-PROVIDER MODEL: UNCERTAINTY REPRESENTATION**

Map-node in the global frame

$$O_{\mathbf{X}_i} = \begin{bmatrix} O_{x_i} \\ O_{y_i} \end{bmatrix}$$

Map-node in the local frame

$$\mathbf{M}\mathbf{X}_{i} = \begin{bmatrix} M \\ M \\ y_{i} \end{bmatrix} = M \mathbf{R}_{O} \left(\begin{bmatrix} O \\ X_{i} \\ O \\ y_{i} \end{bmatrix} - \begin{bmatrix} O \\ X_{M} \\ O \\ y_{M} \end{bmatrix} \right) = f(\mathbf{X}_{M}, \theta, \mathbf{X}_{i})$$

04 MAP-AIDED MULTI-SENSOR FUSION FOR LANE BOUNDARIES ESTIMATION MAP-PROVIDER MODEL : UNCERTAINTY REPRESENTATION

Uncertainty of map-node in the global frame

$$Var(\mathbf{X}_i) = Var(^{O}\mathbf{X}_{Map}) \forall i = 1..N_i$$

Uncertainty of map-node in the local frame

$$Var(\mathbf{M}\mathbf{X}_{i}) = \begin{bmatrix} \frac{\partial f}{\partial \mathbf{X}_{5}} \end{bmatrix} \begin{bmatrix} \mathbf{O}\mathbf{\Sigma}_{M} & \mathbf{0} \\ \mathbf{0} & Var(\mathbf{O}\mathbf{X}_{i}) \end{bmatrix} \begin{bmatrix} \frac{\partial f}{\partial \mathbf{O}\mathbf{X}_{5}} \end{bmatrix}^{T}$$

Takes into account both **mapping** and **localization error** !

where:

$$\begin{bmatrix} \frac{\partial f}{\partial O \mathbf{X}_5} \end{bmatrix} = \begin{bmatrix} -\cos(\theta) & -\sin(\theta) & \underline{M}_{y_i} & \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) & -\underline{M}_{x_i} & -\sin(\theta) & \cos(\theta) \end{bmatrix}$$

Do not depend on global coordinates ! Can be computed after map-provider delivered 🗸

04 MAP-AIDED MULTI-SENSOR FUSION FOR LANE BOUNDARIES ESTIMATION MAP-PROVIDERS : UNCERTAINTY REPRESENTATION

- 1. Initialization
- 2. Prediction
- 3. Association
- 4. Label

 Road feature are initialized from map-provider delivery and according to mapping and localization error model:

$$F_j = [x_j, y_j, \theta_j, \mathbf{\Sigma}_F]$$
 $\mathbf{\Sigma}_F = Var(^M \mathbf{X}_i)$

- 1. Initialization
- 2. Prediction
- 3. Association
- 4. Label

Predict the status of the (map-provided) road features according to ego-movement estimation: $\Delta Eao_t = [dx, dy, d\theta, \Sigma_E]$

$$\Delta E go_t = [ax, ay, a\theta, \Sigma]$$

 $\mathbf{w_t} \sim \mathcal{N}(0, \mathbf{\Sigma}_E)$

Up to the latest smart sensor delivery measure date

- 1. Initialization
- 2. Prediction
- 3. Association
- 4. Label

 Map-nodes (as road features) are projected onto measurements identifying Feature-to-Feature Mahalanobis distance:

 $d^{2}(p_{\perp}(F_{j}), F_{j}) = (p_{\perp}(F_{j}) - F_{j})^{T} (^{M} \boldsymbol{\Sigma}_{F} + Var(^{M} \mathbf{X}_{i}))^{-1} (p_{\perp}(F_{j}) - F_{j})$

• *M* to *L* distance metric for GNN association:

 $d(M,L) = \max_{F_j \in L} d(p_{\perp}(F_j), F_j)$

57 Confidential C

- 1. Initialization
- 2. Prediction
- 3. Association
- 4. Label

- The HD-map is supposed to be complete of all detectable lane boundaries
- Then Non-Associated smart sensor measurements are labeled as False Positives

- 1. Development setup
- 2. Application for false positives detection
- 3. Scoring for multiple hypotheses of ego-vehicle localization

60 Confidential C

04 MAP-AIDED MULTI-SENSOR FUSION FOR LANE BOUNDARIES ESTIMATION EXPERIMENTAL RESULTS

Execution in *Fusionrunner* environment : qualitative evaluation

04 MAP-AIDED MULTI-SENSOR FUSION FOR LANE BOUNDARIES ESTIMATION EXPERIMENTAL RESULTS : METHOD VALIDATION

- Execution in *Fusionrunner* environment : simulated localization fault generation
- In absence of better ground truth, two alterations of the recorded data are generated:
 - Correct (authentic)
 - Altered1 (shifted 1 lane left)
 - Altered2 (shifted 2 lanes left)
- Context camera can confirm which alteration is correct

Correct

O3 MULTI-SENSOR FUSION FOR LANE BOUNDARIES ESTIMATION EXPERIMENTAL RESULTS : METHOD VALIDATION

Execution in *Fusionrunner* environment : three variations of same data record

63 Confidential C

O3 MULTI-SENSOR FUSION FOR LANE BOUNDARIES ESTIMATION EXPERIMENTAL RESULT : METHOD VALIDATION

 Enumerating FP and TP within a sliding window of 5 seconds, the *Precision* indicator is defined:

$$Precision(t-5,t) = \frac{TP}{TP + FP}$$

O3 MULTI-SENSOR FUSION FOR LANE BOUNDARIES ESTIMATION EXPERIMENTAL RESULT : METHOD VALIDATION

 Enumerating FP and TP within a sliding window of 5 seconds, the *Precision* indicator is defined:

$$Precision(t-5,t) = \frac{TP}{TP + FP}$$

Question : can the the **Precision** indicator **discriminate faulty localization** of ego-vehicle?

Method detects more FPs from sensors

Proposed association method is validated ✔

04 MAP-AIDED MULTI-SENSOR FUSION FOR LANE BOUNDARIES ESTIMATION

EXPERIMENTAL RESULTS

- heudiasyc 🐨 🐒 / 🗲 utc RG
- The proposed method can successfully detect altered localization
 - If information in sensor delivery is enough (FrontCam > AVM)
- This detection is confirmed using Smart FrontCam and indicator *Precision(0,end)*:

	Smart FrontCam	Smart AVM
Correct	89.43%	99.07%
Altered1	57.31%	98.31%
Altered 2	79.00%	98.60%

Lane boundaries probabilistic association method has been introduced and implemented

Detection of false positives measurements from smart sensors validated the proposed method

Application of the method for scoring multiple hypothesis of ego-vehicle localization reveals Smart FrontCam can better detect a localization fault rather than Smart AVM Work resulted in pending application for Renault/UTC/CNRS patent

OF CONCLUSION THESIS CONTRIBUTIONS

- Feature-tracking, method for multi-sensor fusion of lane boundaries issued of smart sensors
 - B Deployed on-vehicle in Renault L3 experimentations
- **Quantitative evaluation** w.r.t. HD-map of lane boundaries tracking methods in terms of lateral RMSE
 - Resulted in a publication at international conference IV2020
- Lane boundaries probabilistic association method enabling measure-to-track pairing in our tracking proposals
 - Resulted in application for Renault/CNRS patent
- Map-tracking, method for multi-sensor fusion of lane boundaries issued of smart sensors and map-providers (not presented)
- Usage of Precision metric enabling false-positives detection and multi-hypotheses localization scoring

References :

- **F. Camarda, F. Davoine, V. Cherfaoui, B. Durand**. *Multisensor Tracking of Lane Boundaries based on Smart Sensor Fusion*. IEEE Intelligent Vehicles Symposium (IV 2020), Oct 2020, Las Vegas, United States.
- F. Camarda, B. Durand, F. Davoine, V. Cherfaoui. Procédé de détection d'une limite d'une voie de circulation. Renault/UTC/CNRS patent. Applied for French patenting at Institut National de la Propriété Industrielle (INPI) under the identifier n°2110938, Oct 2021.

OS CONCLUSION RESEARCH PERSPECTIVES

- Integrate other vehicles trails in data fusion
 - Range extension

- Release *"unvarying HD-map"* assumption
 - Lane boundaries can evolve!

Versailles, April 2020

Questions, domande, questions